Cressey, D. Bottles, bags, ropes and toothbrushes: the struggle to track ocean plastics. Nature 536, 263–265 (2016).
CAS PubMed Google Scholar
Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
CAS PubMed Google Scholar
Carpenter, E. J. & Smith, K. L. Plastics on the sargasso sea surface. Science 175, 1240–1241 (1972).
CAS PubMed Google Scholar
Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).
CAS PubMed Google Scholar
Jenner, L. C. et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 831, 154907 (2022).
CAS PubMed Google Scholar
Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).
CAS PubMed Google Scholar
World Health Organization. Dietary and Inhalation Exposure to Nano-and Microplastic Particles and Potential Implications for Human Health (WHO, 2022).
UNEP Environment Assembly. Resolution adopted by the United Nations Environment Assembly on 2 March 2022 5/14. End plastic pollution: towards an international legally binding instrument. UNEP/EA.5/RES.14 (2022).
European Union. Directive - 2019/904 - EN - SUP Directive - EUR-Lex. PE/11/2019/REV/1 (2019).
Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 390, 900–910 (2024).
CAS PubMed PubMed Central Google Scholar
Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 31, 1114–1119 (2025).
CAS PubMed PubMed Central Google Scholar
Allen, D. et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 3, 393–405 (2022).
CAS Google Scholar
Ugwu, K., Herrera, A. & Gómez, M. Microplastics in marine biota: a review. Mar. Pollut. Bull. 169, 112540 (2021).
CAS PubMed Google Scholar
Koelmans, A. A. et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 155, 410–422 (2019).
CAS PubMed PubMed Central Google Scholar
Feng, S., Lu, H., Yao, T., Tang, M. & Yin, C. Analysis of microplastics in soils on the high-altitude area of the Tibetan Plateau: multiple environmental factors. Sci. Total Environ. 857, 159399 (2023).
CAS PubMed Google Scholar
Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597 (2011).
CAS PubMed Google Scholar
European Commission. Commission Regulation (EU) 2023/2055 of 25 September 2023 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards synthetic polymer microparticles. C/2023/6419 (2023).
Liu, S. et al. Microplastics in three types of human arteries detected by pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). J. Hazard. Mater. 469, 133855 (2024).
CAS PubMed Google Scholar
Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).
CAS PubMed PubMed Central Google Scholar
Thompson, R. C. et al. Twenty years of microplastic pollution research-what have we learned? Science 386, eadl2746 (2024).
CAS PubMed Google Scholar
Napper, I. E. & Thompson, R. C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar. Pollut. Bull. 112, 39–45 (2016).
CAS PubMed Google Scholar
De Falco, F., Cocca, M., Avella, M. & Thompson, R. C. Microfiber release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters. Environ. Sci. Technol. 54, 3288–3296 (2020).
PubMed Google Scholar
Quik, J., Hids, A., Steenmeijer, M., Mellink, Y. & van Bruggen, A. Emission of Microplastics to Water, Soil, and Air. What Can We Do About It? (National Institute for Public Health and the Environment, 2024).
Gouin, T., Ellis-Hutchings, R., Pemberton, M. & Wilhelmus, B. Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. Part. Fibre Toxicol. 21, 1–27 (2024).
Google Scholar
Boyle, K. & Örmeci, B. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water 12, 2633 (2020).
Google Scholar
Science for Environment Policy. Nanoplastics: State of Knowledge and Environmental and Human Health Impacts (Univ. West England Bristol, 2023).
Letcher, T. M. (ed.) Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions (Academic Press, 2020).
Yokota, K. et al. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics. Limnol. Oceanogr. Lett. 2, 91–104 (2017).
Google Scholar
Prata, J. C. Airborne microplastics: consequences to human health? Environ. Pollut. 234, 115–126 (2018).
CAS PubMed Google Scholar
Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12, 592–599 (2015).
CAS Google Scholar
Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).
CAS Google Scholar
Directorate-General for Research and Innovation. Biodegradability of Plastics in the Open Environment Scientific Opinion No. 10 (European Commission, 2021).
Werbowski, L. M. et al. Urban stormwater runoff: a major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS EST Water 1, 1420–1428 (2021).
CAS Google Scholar
Astner, A. F. et al. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. Sci. Total Environ. 685, 1097–1106 (2019).
CAS PubMed Google Scholar
Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550, 690–705 (2016).
CAS PubMed Google Scholar
Wiewel, B. V. & Lamoree, M. Geotextile composition, application and ecotoxicology—a review. J. Hazard. Mater. 317, 640–655 (2016).
CAS PubMed Google Scholar
Harley-Nyang, D., Memon, F. A., Osorio Baquero, A. & Galloway, T. Variation in microplastic concentration, characteristics and distribution in sewage sludge & biosolids around the world. Sci. Total Environ. 891, 164068 (2023).
CAS PubMed Google Scholar
European Commission: Directorate-General for Environment and University of the West of England. Nanoplastics – State of Knowledge and Environmental and Human Health Impacts (Publications Office of the European Union, 2023).
World Health Organization. Microplastics in Drinking-Water (2019).
Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).
CAS PubMed Google Scholar
Food, Safety & Authority, E. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, e04501 (2016).
Google Scholar
Passos, R. S. et al. Microplastics and nanoplastics in haemodialysis waters: emerging threats to be in our radar. Environ. Toxicol. Pharmacol. 102, 104253 (2023).
CAS PubMed Google Scholar
Li, P. et al. Direct entry of micro(nano)plastics into human blood circulatory system by intravenous infusion. iScience 26, 108454 (2023).
CAS PubMed PubMed Central Google Scholar
Krajnak, K. et al. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. J. Toxicol. Environ. Health A 86, 575–596 (2023).
CAS PubMed PubMed Central Google Scholar
Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).
CAS PubMed Google Scholar
Krajnak, K. et al. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. J. Toxicol. Environ. Health A 87, 541–559 (2024).
CAS PubMed PubMed Central Google Scholar
Vianello, A., Jensen, R. L., Liu, L. & Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Dethmers, K., Spek, H. & Kraaijeveld, B. Do Clothes Make Us Sick? Fashion, Fibers and Human Health (Plastic Soup Foundation, 2022).
Prasittisopin, L., Ferdous, W. & Kamchoom, V. Microplastics in construction and built environment. Dev. Built Environ. 15, 100188 (2023).
Google Scholar
Stapleton, M. J., Ansari, A. J., Ahmed, A. & Hai, F. I. Evaluating the generation of microplastics from an unlikely source: the unintentional consequence of the current plastic recycling process. Sci. Total Environ. 902, 166090 (2023).
CAS PubMed Google Scholar
Bao, X. et al. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. Sci. Total Environ. 924, 171472 (2024).
CAS PubMed Google Scholar
Mateos-Cárdenas, A., van Pelt, F. N. A. M., O’Halloran, J. & Jansen, M. A. K. Adsorption, uptake and toxicity of micro- and nanoplastics: effects on terrestrial plants and aquatic macrophytes. Environ. Pollut. 284, 117183 (2021).
PubMed Google Scholar
Larue, C. et al. A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small 17, 2005834 (2021).
CAS Google Scholar
Sa’adu, I. & Farsang, A. Plastic contamination in agricultural soils: a review. Environ. Sci. Eur. 35, 1–11 (2023).
Google Scholar
da Costa, J. P., Avellan, A., Mouneyrac, C., Duarte, A. & Rocha-Santos, T. Plastic additives and microplastics as emerging contaminants: mechanisms and analytical assessment. Trends Anal. Chem. 158, 116898 (2023).
CAS Google Scholar
Seewoo, B. J. et al. How do plastics, including microplastics and plastic-associated chemicals, affect human health? Nat. Med. 30, 3036–3037 (2024).
CAS PubMed Google Scholar
Wagner, M. et al. State of the science on plastic chemicals — identifying and addressing chemicals and polymers of concern. Zenodo https://doi.org/10.5281/zenodo.10701705 (2024).
Ullah, S. et al. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol. 13, 1084236 (2023).
Google Scholar
Witzig, C. S. et al. When good intentions go bad—false positive microplastic detection caused by disposable gloves. Environ. Sci. Technol. 54, 12164–12172 (2020).
CAS PubMed Google Scholar
Noonan, M. J., Grechi, N., Mills, C. L., de, A. M. M. & Ferraz, M. Microplastics analytics: why we should not underestimate the importance of blank controls. Microplastics Nanoplastics 3, 17 (2023).
PubMed Google Scholar
Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ. Sci. Technol. 52, 10230–10240 (2018).
CAS PubMed PubMed Central Google Scholar
Ziajahromi, S. & Leusch, F. D. L. Systematic assessment of data quality and quality assurance/quality control (QA/QC) of current research on microplastics in biosolids and agricultural soils. Environ. Pollut. 294, 118629 (2022).
CAS PubMed Google Scholar
Qiu, Y., Mintenig, S., Barchiesi, M. & Koelmans, A. A. Using artificial intelligence tools for data quality evaluation in the context of microplastic human health risk assessments. Environ. Int. 197, 109341 (2025).
PubMed Google Scholar
Xu, J.-L., Wright, S., Rauert, C. & Thomas, K. V. Are microplastics bad for your health? More rigorous science is needed. Nature 639, 300–302 (2025).
CAS PubMed Google Scholar
Hanif, M. A., Ibrahim, N. & Odli, Z. S. M. Overview of analysis of microplastics and nanoplastics. in Analysis of Microplastics and Nanoplastics 39–61 (Elsevier, 2025).
Yan, Z. et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 56, 414–421 (2022).
CAS PubMed Google Scholar
De Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).
PubMed PubMed Central Google Scholar
Zhang, D. et al. Microplastics are detected in human gallstones and have the ability to form large cholesterol–microplastic heteroaggregates. J. Hazard. Mater. 467, 133631 (2024).
CAS PubMed Google Scholar
Luqman, A. et al. Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments 8, 138 (2021).
Google Scholar
Cetin, M. et al. Higher number of microplastics in tumoral colon tissues from patients with colorectal adenocarcinoma. Environ. Chem. Lett. 21, 639–646 (2023).
CAS Google Scholar
Zhao, Q. et al. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 877, 162713 (2023).
CAS PubMed Google Scholar
Hibbert, D. B., Korte, E.-H. & Örnemark, U. Metrological and quality concepts in analytical chemistry (IUPAC Recommendations 2021). Pure Appl. Chem. 93, 997–1048 (2021).
CAS Google Scholar
Munno, K., Helm, P. A., Jackson, D. A., Rochman, C. & Sims, A. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ. Toxicol. Chem. 37, 91–98 (2018).
CAS PubMed Google Scholar
Dehaut, A. et al. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).
CAS PubMed Google Scholar
Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).
PubMed PubMed Central Google Scholar
Wang, T. et al. Multimodal detection and analysis of microplastics in human thrombi from multiple anatomically distinct sites. eBioMedicine 103, 105118 (2024).
CAS PubMed PubMed Central Google Scholar
Geppner, L. et al. A novel enzymatic method for isolation of plastic particles from human blood. Environ. Toxicol. Pharmacol. 104, 104318 (2023).
CAS PubMed Google Scholar
Al-Azzawi, M. S. M. et al. Validation of sample preparation methods for microplastic analysis in wastewater matrices—reproducibility and standardization. Water 12, 2445 (2020).
Google Scholar
Guan, Q. et al. The landscape of micron-scale particles including microplastics in human enclosed body fluids. J. Hazard. Mater. 442, 130138 (2023).
CAS PubMed Google Scholar
Brits, M. et al. Quantitation of micro and nanoplastics in human blood by pyrolysis-gas chromatography–mass spectrometry. Microplastics Nanoplastics 4, 12 (2024).
CAS Google Scholar
Rauert, C. et al. Assessing the efficacy of pyrolysis–gas chromatography–mass spectrometry for nanoplastic and microplastic analysis in human blood. Environ. Sci. Technol. 59, 1984–1994 (2025).
CAS PubMed PubMed Central Google Scholar
Xu, H. et al. Detection and analysis of microplastics in tissues and blood of human cervical cancer patients. Environ. Res. 259, 119498 (2024).
CAS PubMed Google Scholar
Garcia, M. A. et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry. Toxicol. Sci. 199, 81–88 (2024).
CAS PubMed PubMed Central Google Scholar
Song, X. et al. Micro(nano)plastics in human urine: a surprising contrast between Chongqing’s urban and rural regions. Sci. Total Environ. 917, 170455 (2024).
CAS PubMed Google Scholar
Rauert, C., Pan, Y., Okoffo, E. D., O’Brien, J. W. & Thomas, K. V. Extraction and pyrolysis–GC–MS analysis of polyethylene in samples with medium to high lipid content. J. Environ. Expo. Assess. 1, 13 (2022).
CAS Google Scholar
Nijenhuis, W. et al. Improved multivariate quantification of plastic particles in human blood using non-targeted pyrolysis GC–MS. J. Hazard. Mater. 489, 137584 (2025).
CAS PubMed Google Scholar
Zhang, N., Li, Y. B., He, H. R., Zhang, J. F. & Ma, G. S. You are what you eat: microplastics in the feces of young men living in Beijing. Sci. Total Environ. 767, 144345 (2021).
CAS PubMed Google Scholar
The Lancet Planetary Health. Microplastics and human health—an urgent problem. Lancet Planet. Health 1, e254 (2017).
CAS PubMed Google Scholar
Amereh, F. et al. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ. Pollut. 314, 120174 (2022).
CAS PubMed Google Scholar
Xue, J. et al. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci. Total Environ. 920, 171044 (2024).
CAS PubMed Google Scholar
Xu, H. et al. Microplastic changes during the development of cervical cancer and its effects on the metabolomic profiles of cancer tissues. J. Hazard. Mater. 483, 136656 (2025).
CAS PubMed Google Scholar
Zhao, J., Zhang, H., Shi, L., Jia, Y. & Sheng, H. Detection and quantification of microplastics in various types of human tumor tissues. Ecotoxicol. Environ. Saf. 283, 116818 (2024).
CAS PubMed Google Scholar
Yang, Y. et al. Microplastics are associated with elevated atherosclerotic risk and increased vascular complexity in acute coronary syndrome patients. Part. Fibre Toxicol. 21, 34 (2024).
CAS PubMed PubMed Central Google Scholar
Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. eBioMedicine 82, 104147 (2022).
CAS PubMed PubMed Central Google Scholar
Garcia, M. M. et al. In vivo tissue distribution of polystyrene or mixed polymer microspheres and metabolomic analysis after oral exposure in mice. Environ. Health Perspect. 132, 047005 (2024).
CAS PubMed PubMed Central Google Scholar
Nikolic, S. et al. Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. Environ. Pollut. 305, 119206 (2022).
CAS PubMed Google Scholar
Ding, Y. et al. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. Environ. Pollut. 280, 116974 (2021).
CAS PubMed Google Scholar
Zaheer, J. et al. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ. Int. 161, 107121 (2022).
CAS PubMed Google Scholar
Zhang, Z. et al. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. J. Hazard. Mater. 461, 132503 (2024).
CAS PubMed Google Scholar
Xu, D., Ma, Y., Han, X. & Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 417, 126092 (2021).
CAS PubMed Google Scholar
Deng, Y., Zhang, Y., Lemos, B. & Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 7, 46687 (2017).
PubMed PubMed Central Google Scholar
Jin, Y., Lu, L., Tu, W., Luo, T. & Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 649, 308–317 (2019).
CAS PubMed Google Scholar
Stock, V. et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 93, 1817–1833 (2019).
CAS PubMed Google Scholar
Xiong, X. et al. The microplastics exposure induce the kidney injury in mice revealed by RNA-seq. Ecotoxicol. Environ. Saf. 256, 114821 (2023).
CAS PubMed Google Scholar
Jin, H. et al. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect. 130, 107002 (2022).
CAS PubMed PubMed Central Google Scholar
Shan, S., Zhang, Y., Zhao, H., Zeng, T. & Zhao, X. Polystyrene nanoplastics penetrate across the blood–brain barrier and induce activation of microglia in the brain of mice. Chemosphere 298, 134261 (2022).
CAS PubMed Google Scholar
Lee, C.-W. et al. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J. Hazard. Mater. 430, 128431 (2022).
CAS PubMed Google Scholar
Okamura, T. et al. Oral exposure to polystyrene microplastics of mice on a normal or high-fat diet and intestinal and metabolic outcomes. Environ. Health Perspect. 131, 027006 (2023).
CAS PubMed PubMed Central Google Scholar
Wen, J. et al. Environmentally relevant concentrations of microplastic exposure cause cholestasis and bile acid metabolism dysregulation through a gut–liver loop in mice. Environ. Sci. Technol. 58, 1832–1841 (2024).
CAS PubMed Google Scholar
Jeon, B. J. et al. Examining the relationship between polystyrene microplastics and male fertility: insights from an in vivo study and in vitro sertoli cell culture. J. Korean Med. Sci. 39, e259 (2024).
CAS PubMed PubMed Central Google Scholar
Moreno, G. M. et al. Identification of micro- and nanoplastic particles in postnatal Sprague–Dawley rat offspring after maternal inhalation exposure throughout gestation. Sci. Total Environ. 951, 175350 (2024).
CAS PubMed PubMed Central Google Scholar
Fournier, S. B. et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 17, 1–11 (2020).
Google Scholar
Abdelkhaliq, A. et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J. Nanobiotechnology 16, 70 (2018).
PubMed PubMed Central Google Scholar
Schimpel, C. et al. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol. Pharm. 11, 808–818 (2014).
CAS PubMed Google Scholar
Marcellus, K. A., Prescott, D., Scur, M., Ross, N. & Gill, S. S. Exposure of polystyrene nano- and microplastics in increasingly complex in vitro intestinal cell models. Nanomaterials 15, 267 (2025).
CAS PubMed PubMed Central Google Scholar
Yang, S. et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol. Environ. Saf. 226, 112837 (2021).
CAS PubMed Google Scholar
Dusza, H. M. et al. Uptake, transport, and toxicity of pristine and weathered micro- and nanoplastics in human placenta cells. Environ. Health Perspect. 130, 97006 (2022).
CAS PubMed Google Scholar
Rothbauer, M. et al. A comparative study of five physiological key parameters between four different human trophoblast-derived cell lines. Sci. Rep. 7, 5892 (2017).
PubMed PubMed Central Google Scholar
Lesniak, A. et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013).
CAS PubMed Google Scholar
Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020).
CAS PubMed PubMed Central Google Scholar
Zeng, G. et al. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. Environ. Pollut. 345, 123473 (2024).
CAS PubMed Google Scholar
Donkers, J. M. et al. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Microplastics Nanoplastics 2, 1–18 (2022).
Google Scholar
Dong, C. D. et al. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J. Hazard. Mater. 385, 121575 (2020).
CAS PubMed Google Scholar
Paul, M. B., Böhmert, L., Hsiao, I. L., Braeuning, A. & Sieg, H. Complex intestinal and hepatic in vitro barrier models reveal information on uptake and impact of micro-, submicro- and nanoplastics. Environ. Int. 179, 108172 (2023).
CAS PubMed Google Scholar
Liu, L. et al. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci. Total Environ. 779, 146523 (2021).
CAS PubMed Google Scholar
da Silva, A. B. et al. Gastrointestinal absorption and toxicity of nanoparticles and microparticles: Myth, reality and pitfalls explored through titanium dioxide. Curr. Opin. Toxicol. 19, 112–120 (2020).
PubMed PubMed Central Google Scholar
Gruber, M. M. et al. Plasma proteins facilitates placental transfer of polystyrene particles. J. Nanobiotechnology 18, 1–14 (2020).
Google Scholar
Wick, P. et al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432–436 (2010).
CAS PubMed Google Scholar
Aengenheister, L. et al. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Sci. Rep. 8, 5388 (2018).
PubMed PubMed Central Google Scholar
Liu, S. et al. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: a pilot prospective study. Sci. Total Environ. 854, 158699 (2023).
CAS PubMed Google Scholar
Liu, W. et al. Toxicological effects of micro/nano-plastics on mouse/rat models: a systematic review and meta-analysis. Front. Public Health 11, 1103289 (2023).
PubMed PubMed Central Google Scholar
Hu, J. et al. Polystyrene microplastics disturb maternal–fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod. Toxicol. 106, 42–50 (2021).
CAS PubMed Google Scholar
Bai, J. et al. Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress. Part. Fibre Toxicol. 21, 36 (2024).
CAS PubMed PubMed Central Google Scholar
Cheng, W. et al. Aged fragmented-polypropylene microplastics induced ageing statues-dependent bioenergetic imbalance and reductive stress: In vivo and liver organoids-based in vitro study. Environ. Int. 191, 108949 (2024).
CAS PubMed Google Scholar
Lu, L., Wan, Z., Luo, T., Fu, Z. & Jin, Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total Environ. 631–632, 449–458 (2018).
PubMed Google Scholar
Zeng, L. et al. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. Ecotoxicol. Environ. Saf. 257, 114941 (2023).
CAS PubMed Google Scholar
Hou, B., Wang, F., Liu, T. & Wang, Z. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice. J. Hazard. Mater. 405, 124028 (2021).
CAS PubMed Google Scholar
Fang, Q., Wang, C. & Xiong, Y. Polystyrene microplastics induce male reproductive toxicity in mice by activating spermatogonium mitochondrial oxidative stress and apoptosis. Chem. Biol. Interact. 396, 111043 (2024).
CAS PubMed Google Scholar
Hou, J. et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol. Environ. Saf. 212, 112012 (2021).
CAS PubMed Google Scholar
Hu, Y. et al. Protective effect of Cordycepin on blood–testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Part. Fibre Toxicol. 21, 30 (2024).
CAS PubMed PubMed Central Google Scholar
Ilechukwu, I. et al. Chronic toxic effects of polystyrene microplastics on reproductive parameters of male rats. Environ. Anal. Health Toxicol. 37, e2022015 (2022).
PubMed PubMed Central Google Scholar
Wang, W. et al. Polystyrene microplastics induced ovarian toxicity in juvenile rats associated with oxidative stress and activation of the PERK–eIF2α–ATF4–CHOP signaling pathway. Toxics 11, 225 (2023).
CAS PubMed PubMed Central Google Scholar
Xuan, L. et al. Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids. Sci. Total Environ. 913, 169606 (2024).
CAS PubMed Google Scholar
da Silva Brito, W. A. et al. Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro. Chemosphere 355, 141813 (2024).
PubMed Google Scholar
Woo, J. H. et al. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Part. Fibre Toxicol. 20, 2 (2023).
CAS PubMed PubMed Central Google Scholar
Hu, J. et al. The potential toxicity of polystyrene nanoplastics to human trophoblasts in vitro. Environ. Pollut. 311, 119924 (2022).
CAS PubMed Google Scholar
Ma, L. et al. Differences in toxicity induced by the various polymer types of nanoplastics on HepG2 cells. Sci. Total Environ. 918, 170664 (2024).
CAS PubMed Google Scholar
Goodman, K. E., Hua, T. & Sang, Q. X. A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism. ACS Omega 7, 34136–34153 (2022).
CAS PubMed PubMed Central Google Scholar
van Boxel, J. et al. Effects of polystyrene micro- and nanoplastics on androgen- and estrogen receptor activity and steroidogenesis in vitro. Toxicol. Vitr. 101, 105938 (2024).
Google Scholar
Zhou, B. et al. Microplastics exposure disrupts nephrogenesis and induces renal toxicity in human iPSC-derived kidney organoids. Environ. Pollut. 360, 124645 (2024).
CAS PubMed Google Scholar
da Silva Brito, W. A. et al. Comprehensive in vitro polymer type, concentration, and size correlation analysis to microplastic toxicity and inflammation. Sci. Total Environ. 854, 158731 (2023).
PubMed Google Scholar
Shelver, W. L., Billey, L. O., McGarvey, A. M., Hoselton, S. A. & Banerjee, A. The effects of concentration, duration of exposure, size and surface function of polymethyl methacrylate micro/nanoplastics on human liver cells. Ecotoxicol. Environ. Saf. 287, 117240 (2024).
CAS PubMed Google Scholar
Schneider, K. et al. ToxRTool, a new tool to assess the reliability of toxicological data. Toxicol. Lett. 189, 138–144 (2009).
CAS PubMed Google Scholar
Cartwright, L. et al. In vitro placental model optimization for nanoparticle transport studies. Int. J. Nanomed. 7, 497–510 (2012).
CAS Google Scholar
Boran, T. et al. An evaluation of a hepatotoxicity risk induced by the microplastic polymethyl methacrylate (PMMA) using HepG2/THP-1 co-culture model. Environ. Sci. Pollut. Res. 31, 28890–28904 (2024).
CAS Google Scholar
Zhu, Z. et al. Polystyrene nanoplastics induce apoptosis of human kidney proximal tubular epithelial cells via oxidative stress and MAPK signaling pathways. Environ. Sci. Pollut. Res. Int. 30, 110579–110589 (2023).
CAS PubMed Google Scholar
Lu, Yyang, Cao, M., Tian, M. & Huang, Q. Internalization and cytotoxicity of polystyrene microplastics in human umbilical vein endothelial cells. J. Appl. Toxicol. 43, 262–271 (2023).
CAS PubMed Google Scholar
Schmid, O. & Cassee, F. R. On the pivotal role of dose for particle toxicology and risk assessment: exposure is a poor surrogate for delivered dose. Part. Fibre Toxicol. 14, 52 (2017).
PubMed PubMed Central Google Scholar
Wang, Y. & Qian, H. Phthalates and their impacts on human health. Healthcare 9, 603 (2021).
PubMed PubMed Central Google Scholar
Ma, Y. et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 176, 108575 (2019).
CAS PubMed Google Scholar
Busch, M., Kämpfer, A. A. M. & Schins, R. P. F. An inverted in vitro triple culture model of the healthy and inflamed intestine: adverse effects of polyethylene particles. Chemosphere 284, 131345 (2021).
CAS PubMed Google Scholar
Montano, L. et al. Raman microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 901, 165922 (2023).
CAS PubMed Google Scholar
Montano, L. et al. First evidence of microplastics in human ovarian follicular fluid: an emerging threat to female fertility. Ecotoxicol. Environ. Saf. 291, 117868 (2025).
CAS PubMed Google Scholar
Halfar, J. et al. Microplastics and additives in patients with preterm birth: the first evidence of their presence in both human amniotic fluid and placenta. Chemosphere 343, 140301 (2023).
CAS PubMed Google Scholar
Chartres, N. et al. Effects of microplastic exposure on human digestive, reproductive, and respiratory health: a rapid systematic review. Environ. Sci. Technol. 58, 22843–22864 (2024).
CAS PubMed PubMed Central Google Scholar
Plastic pollution assessment and monitoring – harmonization and standardization of methods- EUROqCHARM. Zenodo https://zenodo.org/communities/eqctest/ (accessed 3 March 2025).
van Mourik, L. M. et al. Results of WEPAL-QUASIMEME/NORMANs first global interlaboratory study on microplastics reveal urgent need for harmonization. Sci. Total Environ. 772, 145071 (2021).
PubMed Google Scholar
Hurley, R. et al. Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. Sci. Total Environ. 946, 174325 (2024).
CAS PubMed Google Scholar
Dorresteijn, J. M. et al. Chitosan microsphere-supported catalysts: design, synthesis and optimization for ethylene polymerization. Mater. Adv. 6, 201–213 (2025).
CAS PubMed Google Scholar
Cohen, J. M., Beltran-Huarac, J., Pyrgiotakis, G. & Demokritou, P. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact 10, 81–86 (2018).
PubMed Google Scholar
Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18, 285 (2016).
PubMed PubMed Central Google Scholar
Xu, W. et al. Single-cell RNA-seq analysis decodes the kidney microenvironment induced by polystyrene microplastics in mice receiving a high-fat diet. J. Nanobiotechnology 22, 1–21 (2024).
Google Scholar
Wardani, I., Hazimah Mohamed Nor, N., Wright, S. L., Kooter, I. M. & Koelmans, A. A. Nano- and microplastic PBK modeling in the context of human exposure and risk assessment. Environ. Int. 186, 108504 (2024).
CAS PubMed Google Scholar
Chen, C. Y., Kamineni, V. N. & Lin, Z. A physiologically based toxicokinetic model for microplastics and nanoplastics in mice after oral exposure and its implications for human dietary exposure assessment. J. Hazard. Mater. 480, 135922 (2024).
CAS PubMed Google Scholar
Prata, J. C. Microplastics and human health: integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 53, 1489–1511 (2023).
CAS Google Scholar
Helm, L. T., Venier-Cambron, C. & Verburg, P. H. The potential land-use impacts of bio-based plastics and plastic alternatives. Nat. Sustain. 8, 190–201 (2025).
Google Scholar
Leenders, N. et al. Polycotton waste textile recycling by sequential hydrolysis and glycolysis. Nat. Commun. 16, 738 (2025).
CAS PubMed PubMed Central Google Scholar
European Commission. EU Action Plan: ‘Towards Zero Pollution for Air, Water and Soil’ https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0400 (2021).
Wright, S. et al. Application of infrared and near-infrared microspectroscopy to microplastic human exposure measurements. Appl. Spectrosc. 77, 1105–1128 (2023).
CAS PubMed PubMed Central Google Scholar
Ishimura, T. et al. Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis–GC/MS. J. Anal. Appl. Pyrolysis 157, 105188 (2021).
CAS Google Scholar
Berkel, C. & Özbek, O. Methods used in the identification and quantification of micro(nano)plastics from water environments. South Afr. J. Chem. Eng. 50, 388–403 (2024).
Google Scholar
Lee, D.-W. et al. Microplastic particles in human blood and their association with coagulation markers. Sci. Rep. 14, 30419 (2024).
CAS PubMed PubMed Central Google Scholar
Leonard, S. V. L. et al. Microplastics in human blood: polymer types, concentrations and characterisation using μFTIR. Environ. Int. 188, 108751 (2024).
Google Scholar
Sun, H. et al. Microplastics in maternal blood, fetal appendages, and umbilical vein blood. Ecotoxicol. Environ. Saf. 287, 117300 (2024).
CAS PubMed Google Scholar
Yu, H. et al. Association between blood microplastic levels and severity of extracranial artery stenosis. J. Hazard. Mater. 480, 136211 (2024).
CAS PubMed Google Scholar
Braun, T. et al. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 13, 921 (2021).
CAS PubMed PubMed Central Google Scholar
Weingrill, R. B. et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawaiʻi. Environ. Int. 180, 108220 (2023).
CAS PubMed PubMed Central Google Scholar
Zhu, L. et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 856, 159060 (2023).
CAS PubMed Google Scholar
Huo, C. et al. Polystyrene microplastics induce injury to the vascular endothelial through NLRP3-mediated pyroptosis. Environ. Toxicol. 39, 5086–5098 (2024).
CAS PubMed Google Scholar
Martín-Pérez, J. et al. Hazard assessment of nanoplastics is driven by their surface-functionalization. Effects in human-derived primary endothelial cells. Sci. Total Environ. 934, 173236 (2024).
PubMed Google Scholar
Hesler, M. et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. Vitr. 61, 104610 (2019).
CAS Google Scholar
Huang, J. P. et al. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta 36, 1433–1441 (2015).
CAS PubMed Google Scholar
Wan, S. et al. Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage. Part. Fibre Toxicol. 21, 13 (2024).
CAS PubMed PubMed Central Google Scholar
Fournier, E. et al. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model. J. Hazard. Mater. 443, 130383 (2023).
CAS PubMed Google Scholar
Inkielewicz-Stepniak, I. et al. The role of mucin in the toxicological impact of polystyrene nanoparticles. Materials 11, 724 (2018).
PubMed PubMed Central Google Scholar
Kim, W. H. et al. Characterization of the intestinal transport mechanism of polystyrene microplastics (MPs) and the potential inhibitory effect of green tea extracts on MPs intestinal absorption. Toxicol. Vitr. 97, 105813 (2024).
CAS Google Scholar
Le Bihanic, F. et al. Toxicity assessment of DMSO extracts of environmental aged beached plastics using human cell lines. Ecotoxicol. Environ. Saf. 289, 117604 (2025).
PubMed Google Scholar
Wang, J. et al. The enhancement in toxic potency of oxidized functionalized polyethylene-microplastics in mice gut and Caco-2 cells. Sci. Total Environ. 903, 166057 (2023).
CAS PubMed Google Scholar
Wu, S., Wu, M., Tian, D., Qiu, L. & Li, T. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells. Environ. Toxicol. 35, 495–506 (2020).
CAS PubMed Google Scholar
Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. Preprint at https://doi.org/10.48550/arXiv.2403.05530 (2024).
Moldoveanu, S. C. Pyrolysis of Organic Molecules: Applications to Health and Environmental Issues (Elsevier, 2018).
Kozliak, E. et al. Pathways toward PAH formation during fatty acid and triglyceride pyrolysis. J. Phys. Chem. A 124, 7559–7574 (2020).
CAS PubMed Google Scholar
Lou, F. et al. Influence of interaction on accuracy of quantification of mixed microplastics using Py-GC/MS. J. Environ. Chem. Eng. 10, 108012 (2022).
CAS Google Scholar
Wenzel, M. et al. Assessment of sample pre-treatment strategies to mitigate matrix effects for microplastics analysis using thermoanalytical techniques. Trends Anal. Chem. 181, 117997 (2024).
CAS Google Scholar
Torres-Agullo, A., Zuri, G. & Lacorte, S. Pyr–GC–Orbitrap–MS method for the target/untargeted analysis of microplastics in air. J. Hazard. Mater. 469, 133981 (2024).
CAS PubMed Google Scholar
Hashemihedeshi, M. et al. Size-resolved identification and quantification of micro/nanoplastics in indoor air using pyrolysis gas chromatography–ion mobility mass spectrometry. J. Am. Soc. Mass. Spectrom. 35, 275–284 (2024).
CAS PubMed Google Scholar
Brits, M. et al. Quantitation of polystyrene by pyrolysis–GC–MS: the impact of polymer standards on micro and nanoplastic analysis. Polym. Test. 137, 108511 (2024).
CAS Google Scholar